
<Insert Picture Here>

SOA Patterns and Best Practices
Gregor Raýman, Technical Architect - SEESAT
HrOUG – Rovinj 2007-10-17

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Safe Harbor Statement

Principles of SOA

Application Silos

Point to point integration

App.
logic

data

GUI

Service Oriented Architecture

backend applications

technical services

orchestration

business services

workflows

front end applications

composite applications

Caveat: Do not create ‘process’ silos
“Object soup”

Typical point to point integration
Too many “services”

Customer

Product

Delivery

Coarse grained services

SOA goal

ERP CRM Mainframe

Update
Address

Reserve
Inventory

Schedule
Shipment

Create
Purchase Order

Schedule
Production

Check
Inventory

SCM

Quote-to-Cash Order-To-Ship

Business Services Repository

Process driven app. composition

More systems – more risks

Operational risks
• Service not available

• Do we need it now?
• Can we use other service?

• Service has an external effect
• Can we call it as a part of a

transaction?
• Failures

• Business exceptions
• Technical failures
• Can we try it again?
• Do we know it?

Organization risks
• Visibility, discoverability

• Can we find it?
• Service overlap, duplication

• Can we reuse it?
• What do other departments do?
• Can we adjust, extend it?

• Transparency
• What exactly does it do?
• How does it run?

• Service dependencies
• What system does it use?
• Who needs it?
• Can we change it?

Growth of reusable assets

Organizational best practices
• Stay close to business

• Remember: SOA is about business, not about technology
• Create cross specialization teams
• Pay attention to business and IT alignment

• Be agile – long run consists of small steps
• Approach SOA evolutionary – no big bang projects
• Use standards, shield proprietary interfaces, embrace change
• Streamline the business processes – use SOA as optimization

enabler
• Security

• Security is not an “ad on”. Plan it from the beginning
• Define SOA governance strategy early

• It’s not about one application.

SOA governance strategy

• Design time aspect
• requirement documentation
• rules, standards, patterns, conventions

• Run time aspect
• Service visibility and discoverability
• Rollout strategy
• Service and process monitoring, SLA, BAM
• Error handing

SOA design time best practices

• Standards
• SOAP, WS-I, JMS, Industry standards data model (e.g. eTOM)
• Use adaptors when accessing proprietary protocols

• Naming conventions – define and enforce them
• Focus on interfaces

• No dependencies on implementations
• Clearly define service contracts

• Catalog and categorize your services
• Create and maintain the portfolio of your services

• Establish an enterprise service bus
• Avoid point to point integration
• Use service virtualization

• Keep your systems coupled loosely
• But know, where to split them

Avoid the anti-patterns
• Don’t let technology drive you

• Remember, it’s about business
• Be alarmed, if a project is called e.g. “the ESB project” instead of

e.g. “near real-time billing project”
• Be alarmed, if the “SOA approach” forces every application to

change
• Don’t overuse web services (SOAP)

• Another communication protocols can be better suited
• Use XML, but don’t overuse it

• Chose the right granularity
• One service can have more operations
• Develop only needed services
• Develop reusable services. Be alarmed, if similar business

processes use different similar services
• Chose the right coupling

• Sometimes tight coupling is the better choice

Best practice: Have a Service registry
Important asset in SOA governance

• Makes the services searchable, discoverable
• Contains service documentation

• Categorization – technical service, business service,
workflow?

• Technical– interfaces, protocols, data model, dependencies
• Risks – is it: read-only, idempotent, expensive, compensable?
• Operational – availability, SLA, alternative services
• Organizational – status, who uses it, who approves changes

• Is a collaboration platform
• Documents user roles
• Contains also not enterprise wide and wanted services
• Governed by an enterprise SOA strategy

Service categories
• Component Services – allow access

to the underlying applications.
• atomic
• one system only
• stateless

• Composite (Business) Services –
implement a business function.
• atomic
• orchestrate component services
• stateless
• no long running transaction

• Conversational (Workflow)
Services – control business
processes
• stateful
• complex transactions

Service Oriented Architecture

backend applications

technical services

orchestration

business services

workflows

front end applications

composite applications

Best practice: Enterprise Service Bus

• Connect
• Should be able to connect to all systems in the enterprise
• Standards: WebServices, Messaging, Database, Files, FTP…
• Adapters: For established legacy applications and proprietary

protocols

• Transform and Enrich
• Talks to each system in the system’s “language”
• Interpreter in the service provider – service consumer conversation

• Distribute
• Delivers the message to the appropriate end systems
• Handles error conditions

Pattern: Asynchronous invocation

Do we need the service immediately?
If not:
• We can “order” the service. It will be delivered when

available.
• We can better schedule the load.
• Our process can continue.
Used communication patterns
• One way message
• Request / Reply

Best practice: Failure classification

Business exceptions
• Specific for business process
• Have to be handled by the business process
• Examples: Customer is on a blacklist; Warehouse run out of

stock; …

Technical failures
• Independent from the business process
• Best handled by the engine, policy driven
• Sometimes can be handled by repeating the invocation later
• Examples: Network broken; System overload; Bugs

Error handling goals

• If possible, reach the goal anyway
• Repeat the invocation
• Use alternative service or approach
• Sometimes human intervention inevitable

• If not possible
• Offer alternative process path
• Undo the partial process progress

Best practice – be proactive, avoid errors
• Technical errors: high availability, redundancy, clustering
• Business errors: careful process design

Undo: Transactions, Compensations

• ACID transactions
• are not effective until

completed
• can be rolled back
• provide better consistency

across the applications
• are simpler to be used
• lock participating resources
• should be short
• require tight coupling
• often not possible

• SOA “transactions”
• effective immediately
• cannot be rolled back, have

to be compensated
• consistency cannot be

always achieved without
side effects

• have to be planned more
carefully

• do not lock participating
resources

• can be long running
• loose coupling is enough
• often the only choice

Pilot project criteria

A pilot project for SOA should:
1. Address a significant, well understood, but not

critical business need
2. consider issues of Governance (relating to the

scope chosen)
3. have SOA related infrastructure requirements
4. require an achievable stretch beyond current

capabilities where gaps exist (skills, processes etc.)
5. be something you will put into production and

deliver ROI

Pilot project examples

I outsourced a
non-critical
business
service.

I enabled multi-
channel access to a

key business
service.

I expanded my
market by putting an

industry standard
interface on my

proprietary
application.

A service in front of my
Loyalty System lets my

customers consume
points through partners.

Pilot project aspects
• Value
• Service identification
• Governance
• Development Methodology
• Service description
• Service provider
• Service requestor and business logic
• Service registry and discovery
• Security
• Service provider and requestor platform and products
• Production Monitoring
• Skills

	SOA Patterns and Best Practices
	Safe Harbor Statement
	Principles of SOA
	Caveat: Do not create ‘process’ silos
	More systems – more risks
	Growth of reusable assets
	Organizational best practices
	SOA governance strategy
	SOA design time best practices
	Avoid the anti-patterns
	Best practice: Have a Service registry�Important asset in SOA governance
	Service categories
	Best practice: Enterprise Service Bus
	Pattern: Asynchronous invocation
	Best practice: Failure classification
	Error handling goals
	Undo: Transactions, Compensations
	Pilot project criteria
	Pilot project examples
	Pilot project aspects

